Maternal mitochondrial function affects paternal mitochondrial inheritance in Drosophila

Author:

Cao Jinguo12ORCID,Luo Yuying1,Chen Yonghe3,Wu Zhaoqi1,Zhang Jiting1,Wu Yi45,Hu Wen4

Affiliation:

1. Department of Basic Medicine, Gannan Medical University , Ganzhou 341000 , China

2. Key Laboratory of Mitochondrial Medicine, Gannan Medical University , Ganzhou 341000 , China

3. Department of Public Health and Health Management, Gannan Medical University , Ganzhou 341000 , China

4. Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education , Ganzhou 341000 , China

5. Key Laboratory of Genetic and Developmental Related Diseases, Gannan Medical University , Ganzhou 341000 , China

Abstract

Abstract The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and postfertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown. Here we show that transplanted exogenous paternal D. yakuba mitochondria can be transmitted to offspring when maternal mitochondria are dysfunctional in D. melanogaster. Furthermore, we show that the preserved paternal mitochondria are functional, and can be stably inherited, such that the proportion of paternal mitochondria increases gradually in subsequent generations. Our work has important implications that paternal mitochondria inheritance should not be overlooked as a genetic phenomenon in evolution, especially when paternal mitochondria are of significant differences from the maternal mitochondria or the maternal mitochondria are functionally abnormal. Our results improve the understanding of mitochondrial inheritance and provide a new model system for its study.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3