HYBRID DYSGENESIS IN DROSOPHILA MELANOGASTER: A SYNDROME OF ABERRANT TRAITS INCLUDING MUTATION, STERILITY AND MALE RECOMBINATION

Author:

Kidwell Margaret G1,Kidwell James F2,Sved John A3

Affiliation:

1. Division of Biology, Brown University, Providence, Rhode Island 02912

2. Division of Medicine, Brown University, Providence, Rhode Island 02912

3. School of Biological Sciences, University of Sydney, N. S. W. 2006, Australia

Abstract

ABSTRACT A syndrome of associated aberrant traits is described in Drosophila melanogaster. Six of these traits, mutation, sterility, male recombination, transmission ratio distortion, chromosomal aberrations and local increases in female recombination, have previously been reported. A seventh trait, nondisjunction, is described for the first time. All of the traits we have examined are found nonreciprocally in F1 hybrids. We present evidence that at least four of the traits are not found in nonhybrids. Therefore we have proposed the name hybrid dysgenesis to describe this syndrome.—A partition of tested strains into two types, designated P and M, was made according to the paternal or maternal contribution required to produce hybrid dysgenesis. This classification seems to hold for crosses of strains from within the United States and Australia, as well as for crosses between strains from the two countries. Strains collected recently from natural populations are typically of the P type and those having a long laboratory history are generally of the M type. However, a group of six strains collected from the wild in the 1960's are unambiguously divided equally between the P and M types. The dichotomy of this latter group raises interesting questions concerning possible implications for speciation.—Temperature often has a critical effect on the manifestation of hybrid dysgenesis. High F1 developmental temperatures tend to increase the expression of sterility, sometimes to extreme levels. Conversely, low developmental temperatures tend to inhibit the expression of some dysgenic traits.—There are potentially important practical implications of hybrid dysgenesis for laboratory experimentation. The results suggest that care should be exercised in planning experiments involving strain crosses.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3