THE EVOLUTION OF ONE- AND TWO-LOCUS SYSTEMS

Author:

Nagylaki Thomas1

Affiliation:

1. Department of Biophysics and Theoretical Biology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637

Abstract

ABSTRACT Assuming age-independent fertilities and mortalities and random mating, continuous-time models for a monoecious population are investigated for weak selection. A single locus with multiple alleles and two alleles at each of two loci are considered. A slow-selection analysis of diallelic and multiallelic two-locus models with discrete nonoverlapping generations is also presented. The selective differences may be functions of genotypic frequencies, but their rate of change due to their explicit dependence on time (if any) must be at most of the second order in s, (i.e., O(s  2)), where s is the intensity of natural selection. Then, after several generations have elapsed, in the continuous time models the time-derivative of the deviations from Hardy-Weinberg proportions is of O(s  2), and in the two-locus models the rate of change of the linkage disequilibrium is of O(s  2). It follows that, if the rate of change of the genotypic fitnesses is smaller than second order in s (i.e., o(s  2)), then to O(s  2) the rate of change of the mean fitness of the population is equal to the genic variance. For a fixed value of s, however, no matter how small, the genic variance may occasionally be smaller in absolute value than the (possibly negative) lower order terms in the change in fitness, and hence the mean fitness may decrease. This happens if the allelic frequencies are changing extremely slowly, and hence occurs often very close to equilibrium. Some new expressions are derived for the change in mean fitness. It is shown that, with an error of O(s), the genotypic frequencies evolve as if the population were in Hardy-Weinberg proportions and linkage equilibrium. Thus, at least for the deterministic behavior of one and two loci, deviations from random combination appear to have very little evolutionary significance.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3