Pedigree analyses of yeast cells recovering from DNA damage allow assignment of lethal events to individual post-treatment generations.

Author:

Klein F,Karwan A,Wintersberger U

Abstract

Abstract Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells (by pedigree analyses up to the third generation) allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies we could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies (three to several hundred cells) probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events (which we call apparent lethal fixations) were mathematically transformed into mean probabilities of lethal fixations as taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits (which we call 00-fixations); only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen (which we call 0-fixations), but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner; 0-fixations were not detected for any dose of EMS applied; the probability for fixation of lethal mutations was found equally high for cells of the first and second post treatment generation and, unexpectedly, was well above control in the third post-treatment generation. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3