Rescue from the abnormal oocyte maternal-effect lethality by ABO heterochromatin in Drosophila melanogaster.

Author:

Tomkiel J,Pimpinelli S,Sandler L

Abstract

Abstract The euchromatic maternal-effect mutation abnormal oocyte (abo), of Drosophila melanogaster interacts with regions of heterochromatin known as ABO, which reside on the X, Y and second chromosomes. Here, we show that survival of progeny from abo females depends in part upon the maternal dosage of ABO heterochromatin. A comparison was made of the recovery of genotypically identical progeny from abo mothers bearing sex chromosomes of various ABO contents. The results show that the recovery of daughters was decreased if mothers were ABO-/ABO-. However, no decrease was observed if mothers were ABO+/ABO-. In addition, the survival of daughters was greater when they received an ABO-X chromosome from an ABO-/ABO+ mother rather than the father. We suggest that these results reflect a complementation or interaction between the ABO-deficient X and the ABO heterochromatin in the maternal genome. This proposed interaction could occur early in oogenesis in the mother or prior to completion of meiosis I in the fertilized egg. To determine if zygotic dosage of ABO heterochromatin might also be important at very early stages of embryogenesis, we examined the timing of zygotic rescue by paternally donated ABO heterochromatin using a second mutation, paternal loss (pal). Homozygous pal males produce progeny which lose paternally derived chromosomes during the early zygotic divisions. Zygotes that have lost a paternal sex chromosome in a fraction of their nuclei will be mosaic for the amount of ABO heterochromatin. By monitoring the recovery of pal-induced mosaics from abo and abo+ females, we could determine the temporal and spatial requirements for ABO function. Results show that the survival of progeny from the abo maternal-effect lethality was increased if ABO heterochromatin was present prior to the pal-induced loss event. Analysis of mosaic patterns did not reveal a specific lethal focus. We conclude from these results that ABO heterochromatin serves its vital function prior to completion of the early cleavage divisions in progeny of abo mothers.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3