How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascobolus immersus?

Author:

Faugeron G,Rhounim L,Rossignol J L

Abstract

Abstract Repeated genes, artificially introduced in Ascobolus immersus by integrative transformation, are frequently inactivated during the sexual phase. Inactivation is observed in about 50% of meioses if duplicated genes are at ectopic chromosomal locations, and in 90% of meioses if genes are tandemly repeated. Inactivation is associated with extensive methylation of the cytosine residues of the duplicated sequences and is induced in the still haploid nuclei of the dikaryotic cell which will undergo karyogamy and subsequent meiosis. Only repeated sequences become methylated. This raises the intriguing question of how the premeiotic inactivation machinery is informed that a nucleus contains multiple copies of a gene. By using in crosses recombinant strains of A. immersus in which either one, two or three genetically independent copies of the exogenous amdS gene from Aspergillus nidulans had been introduced, we could follow the premeiotic inactivation of each one of the ectopic amdS copies. This led us to propose that a prerequisite for inactivation is a premeiotic pairing of repeated sequences and that each copy can undergo successive cycles of pairing. In fact, once methylated, a copy can pair with a still unmethylated copy, so that an uneven number of copies can be subject to inactivation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi;The Fungal Kingdom;2017-09-05

2. Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi;Microbiology Spectrum;2017-08-25

3. Epigenetics of Filamentous Fungi;Encyclopedia of Molecular Cell Biology and Molecular Medicine;2012-05-15

4. Epigenetics of Eukaryotic Microbes;Handbook of Epigenetics;2011

5. From early homologue recognition to synaptonemal complex formation;Chromosoma;2006-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3