HYBRID DYSGENESIS IN DROSOPHILA MELANOGASTER: THE BIOLOGY OF FEMALE AND MALE STERILITY

Author:

Engels William R1,Preston Christine R1

Affiliation:

1. Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706

Abstract

ABSTRACT High levels of female and male sterility were observed among the hybrids from one of the two reciprocal crosses between a wild strain of D. melanogaster known as π2 and laboratory strains. The sterility, which is part of a common syndrome called hybrid dysgenesis, was found to be associated with the rudimentary condition of one or both of the ovaries or testes. All other tissues, including those of the reproductive system were normal, as were longevity and mating behavior. The morphological details of the sterility closely mimic the agametic condition occurring when germ cells are destroyed by irradiation or by the maternal-effect mutation, grandchildless. We suggest that sterility in hybrid dysgenesis is also caused by failure in the early development of germ cells. There is a thermo-sensitive period beginning at approximately the time of initiation of mitosis among primordial germ cells a few hours before the egg hatches and ending during the early larval stages. Our results suggest that hybrid dysgenesis, which also includes male recombination, mutation and other traits, may be limited to the germ line, and that each of the primordial germ cells develops, or fails to develop, independently of the others. This hypothesis is consistent with the observed frequencies of unilateral and bilateral sterility, with the shape of the thermo-sensitivity curves and with the fact that males are less often sterile than females. The features of this intraspecific hybrid sterility are found to resemble those seen in some interspecific Drosophila hybrids, especially those from the cross D. melanogasfer × D. simulans.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3