The Identification of Transposon-Tagged Mutations in Essential Genes That Affect Cell Morphology in Saccharomyces cerevisiae

Author:

Chun Kristin T,Goebl Mark G

Abstract

The yeast Saccharomyces cerevisiae reproduces by budding, and many genes are required for proper bud development. Mutations in some of these genes cause cells to die with an unusual terminal morphology—elongated or otherwise aberrantly shaped buds. To gain insight into bud development, we set out to identify novel genes that encode proteins required for proper bud morphogenesis. Previous studies screened collections of conditional mutations to identify genes required for essential functions, including bud formation. However, genes that are not susceptible to the generation of mutations that cause a conditional phenotype will not be identified in such screens. To identify a more comprehensive collection of mutants, we used transposon mutagenesis to generate a large collection of lethal disruption mutations. This collection was used to identify 209 mutants with disruptions that cause an aberrant terminal bud morphology. The disruption mutations in 33 of these mutants identify three previously uncharacterized genes as essential, and the mutant phenotypes suggest roles for their products in bud morphogenesis.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3