Diploid-associated adaptation to chronic low-dose UV irradiation requires homologous recombination in Saccharomyces cerevisiae

Author:

Shibata Mana1,Keyamura Kenji1,Shioiri Takuya1,Noda Shunsuke1,Akanuma Genki1ORCID,Hishida Takashi1ORCID

Affiliation:

1. Department of Molecular Biology, Graduate School of Science, Gakushuin University , Tokyo 1718588, Japan

Abstract

Abstract Ultraviolet-induced DNA lesions impede DNA replication and transcription and are therefore a potential source of genome instability. Here, we performed serial transfer experiments on nucleotide excision repair-deficient (rad14Δ) yeast cells in the presence of chronic low-dose ultraviolet irradiation, focusing on the mechanisms underlying adaptive responses to chronic low-dose ultraviolet irradiation. Our results show that the entire haploid rad14Δ population rapidly becomes diploid during chronic low-dose ultraviolet exposure, and the evolved diploid rad14Δ cells were more chronic low-dose ultraviolet-resistant than haploid cells. Strikingly, single-stranded DNA, but not pyrimidine dimer, accumulation is associated with diploid-dependent fitness in response to chronic low-dose ultraviolet stress, suggesting that efficient repair of single-stranded DNA tracts is beneficial for chronic low-dose ultraviolet tolerance. Consistent with this hypothesis, homologous recombination is essential for the rapid evolutionary adaptation of diploidy, and rad14Δ cells lacking Rad51 recombinase, a key player in homologous recombination, exhibited abnormal cell morphology characterized by multiple RPA–yellow fluorescent protein foci after chronic low-dose ultraviolet exposure. Furthermore, interhomolog recombination is increased in chronic low-dose ultraviolet-exposed rad14Δ diploids, which causes frequent loss of heterozygosity. Thus, our results highlight the importance of homologous recombination in the survival and genomic stability of cells with unrepaired lesions.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3