Genetic Recombination Through Double-Strand Break Repair: Shift From Two-Progeny Mode to One-Progeny Mode by Heterologous Inserts

Author:

Takahashi Noriko K1,Sakagami Keiko2,Kusano Kohji2,Yamamoto Kenji1,Yoshikura Hiroshi1,Kobayashi Ichizo12

Affiliation:

1. Department of Bacteriology, Medical School, University of Tokyo, Hongo, Tokyo 113, Japan

2. Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Shiroganedai, Tokyo 108 Japan

Abstract

Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escherichia coli RecE pathway. Here, our experiments with plasmids demonstrate that such reciprocal or conservative recombination (two parental DNAs resulting in two progeny DNAs) is frequent at a double-strand break even when there exists the alternative route of nonreciprocal or nonconservative recombination (two parental DNAs resulting in only one progeny DNA). The presence of a long heterologous DNA at the double-strand break, however, resulted in a shift from the conservative (two-progeny) mode to the nonconservative (one-progeny) mode. The product is a DNA free from the heterologous insert containing recombinant flanking sequences. The potential ability of the homologydependent double-strand break repair reaction to detect and eliminate heterologous inserts may have contributed to the evolution of homologous recombination, meiosis and sexual reproduction.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3