DOMINANCE RELATIONSHIPS BETWEEN TWO ALLELIC GENES CONTROLLING GLYCOSYLTRANSFERASES WITH DIFFERENT SUBSTRATE SPECIFICITY IN MELANDRIUM

Author:

van Brederode J1,van Nigtevecht G1

Affiliation:

1. Institute of Genetics, University of Utrecht, Opaalweg 20, Utrecht, The Netherlands

Abstract

ABSTRACT Genetical analysis showed that the genes gG and gX, which control, respectively, the glucosylation and xylosylation of the 7-hydroxyl group of isovitexin in the petals of Melandrium, are alleles. In petal extracts of plants possessing the gene gX an enzyme was present which catalyzed the transfer of the xylose moiety of UDP-xylose to the 7-hydroxyl group of isovitexin. The xylosyl-transferase controlled by the gene gX had a "true Km value" of 0.77 mM for UDP-xylose. The "true Km value" for isovitexin was << 0.04 mM. The transfer of glucose from UDP-glucose to the 7-hydroxyl group of isovitexin is catalyzed by the enzyme controlled by gene gG. In plants possessing both the alleles gG and gX, only the gene product of gG, i.e., isovitexin 7-O-glucoside, was found. In this respect gG is dominant over allele gX. In petal extracts of these gGgX plants, however, besides UDP-glucose: isovitexin 7-O-glucosyltransferase, also UDP-xylose: isovitexin 7-O-xylosyltransferase could be detected. This means that the dominance is not a consequence of transcriptional and/or translational control. Enzyme kinetic experiments showed that inhibition of the xylosyltransferase by the endproduct of the glucosyltransferase did not occur. Comparison of the enzyme kinetic parameters revealed that the dominance is probably caused by differences in Vmax between the two enzymes, both working at saturating isovitexin concentrations. A competition model is suggested which explains why the amount of isovitexin 7-O-glucoside in gGgG plants and the amount of isovitexin 7-O-xyloside in gXgX plants are about the same, whereas in gGgX plants isovitexin 7-O-xyloside escapes detection. The differences in distribution of the isovitexin glycosylation genes in the two species M. album and M. dioicum are discussed.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3