The Gypsy Insulator of Drosophila Affects Chromatin Structure in a Directional Manner

Author:

Chen Siquan1,Corces Victor G1

Affiliation:

1. Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

Abstract Chromatin insulators are thought to regulate gene expression by establishing higher-order domains of chromatin organization, although the specific mechanisms by which these sequences affect enhancer-promoter interactions are not well understood. Here we show that the gypsy insulator of Drosophila can affect chromatin structure. The insulator itself contains several DNase I hypersensitive sites whose occurrence is dependent on the binding of the Suppressor of Hairy-wing [Su(Hw)] protein. The presence of the insulator in the 5′ region of the yellow gene increases the accessibility of the DNA to nucleases in the promoter-proximal, but not the promoter-distal, region. This increase in accessibility is not due to alterations in the primary chromatin fiber, because the number and position of the nucleosomes appears to be the same in the presence or absence of the insulator. Binding of the Su(Hw) protein to insulator DNA is not sufficient to induce changes in chromatin accessibility, and two domains of this protein, presumed to be involved in interactions with other insulator components, are essential for this effect. The presence of Modifier of mdg4 [Mod(mdg4)] protein, a second component of the gypsy insulator, is required to induce these alterations in chromatin accessibility. The results suggest that the gypsy insulator affects chromatin structure and offer insights into the mechanisms by which insulators affect enhancer-promoter interactions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3