Inferring Population History From Microsatellite and Enzyme Data in Serially Introduced Cane Toads, Bufo marinus

Author:

Estoup Arnaud12,Wilson Ian J3,Sullivan Claire1,Cornuet Jean-Marie2,Moritz Craig14

Affiliation:

1. Department of Zoology and Entomology, University of Queensland, QLD 4072 Australia

2. Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, 34980 Montferrier/Lez, France

3. Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

4. Museum of Vertebrate Zoology, University of California, Berkeley, California 94720-3160

Abstract

Abstract Much progress has been made on inferring population history from molecular data. However, complex demographic scenarios have been considered rarely or have proved intractable. The serial introduction of the South-Central American cane toad Bufo marinus in various Caribbean and Pacific islands involves four major phases: a possible genetic admixture during the first introduction, a bottleneck associated with founding, a transitory population boom, and finally, a demographic stabilization. A large amount of historical and demographic information is available for those introductions and can be combined profitably with molecular data. We used a Bayesian approach to combine this information with microsatellite (10 loci) and enzyme (22 loci) data and used a rejection algorithm to simultaneously estimate the demographic parameters describing the four major phases of the introduction history. The general historical trends supported by microsatellites and enzymes were similar. However, there was a stronger support for a larger bottleneck at introductions for microsatellites than enzymes and for a more balanced genetic admixture for enzymes than for microsatellites. Very little information was obtained from either marker about the transitory population boom observed after each introduction. Possible explanations for differences in resolution of demographic events and discrepancies between results obtained with microsatellites and enzymes were explored. Limits of our model and method for the analysis of nonequilibrium populations were discussed.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3