Phosphate Transport and Sensing in Saccharomyces cerevisiae

Author:

Wykoff Dennis D1,O'Shea Erin K1

Affiliation:

1. Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143

Abstract

Abstract Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Δ strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Δ cells; however, the pho84Δ strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Δ cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Δ strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference41 articles.

1. Expression and purification of the high-affinity phosphate transporter of Saccharomyces cerevisiae;Berhe;Eur. J. Biochem.,1995

2. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter;Bun-Ya;Mol. Cell. Biol.,1991

3. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae;Bun-Ya;Curr. Genet.,1996

4. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response;Carroll;Proc. Natl. Acad. Sci. USA,2001

5. Multifunctional yeast high-copy-number shuttle vectors;Christianson;Gene,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3