HYBRID DYSGENESIS IN DROSOPHILA MELANOGASTER: FACTORS AFFECTING CHROMOSOMAL CONTAMINATION IN THE P-M SYSTEM

Author:

Kidwell Margaret G1

Affiliation:

1. Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912

Abstract

ABSTRACT The two interacting components of the P-M system of hybrid dysgenesis are chromosomally associated elements called P factors and a susceptible cytoplasmic state referred to as M cytotype. Previous experiments have indicated that P factors are a family of multiple-copy transposable genetic elements dispersed throughout the genome of P strains but absent in long-established M strains.—Evidence is presented that the sterility and male recombination-inducing potential of P elements may be acquired by X chromosomes, derived from M strains, through nonhomologous association with P strain autosomes, a process referred to as "chromosomal contamination." The frequencies of chromosomal contamination of X chromosomes by P strain autosomes were highly variable and depended on a number of factors. M cytotype (as opposed to P cytotype) was essential for high frequencies of P factor contamination. There were large differences in contamination potential among individual female families, and a weak negative correlation existed between family size and contamination frequency. Chromosomal contamination in the P-M system was shown to be independent of that in the I-R system.—Frequency distributions suggested that the relationship between sterility production and P factor insertion is complex. The majority of P element transpositions, identified by in situ hybridization in one X chromosome, were not associated with gonadal sterility. However, high sterility potential was found to be associated with the presence of at least one P element inserted into the X chromosome. This potential was lost at a rate of about one-sixth per generation in M cytotype but was stabilized in P cytotype. Various hypotheses concerning the relationship between transposition and chromosomal contamination are discussed.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3