X-linked meiotic drive can boost population size and persistence

Author:

Mackintosh Carl12ORCID,Pomiankowski Andrew12ORCID,Scott Michael F13ORCID

Affiliation:

1. Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK

2. CoMPLEX, University College London, London WC1E 6BT, UK

3. School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

Abstract

Abstract X-linked meiotic drivers cause X-bearing sperm to be produced in excess by male carriers, leading to female-biased sex ratios. Here, we find general conditions for the spread and fixation of X-linked alleles. Our conditions show that the spread of X-linked alleles depends on sex-specific selection and transmission rather than the time spent in each sex. Applying this logic to meiotic drive, we show that polymorphism is heavily dependent on sperm competition induced both by female and male mating behavior and the degree of compensation to gamete loss in the ejaculate size of drive males. We extend these evolutionary models to investigate the demographic consequences of biased sex ratios. Our results suggest driving X-alleles that invade and reach polymorphism (or fix and do not bias segregation excessively) will boost population size and persistence time by increasing population productivity, demonstrating the potential for selfish genetic elements to move sex ratios closer to the population-level optimum. However, when the spread of drive causes strong sex-ratio bias, it can lead to populations with so few males that females remain unmated, cannot produce offspring, and go extinct. This outcome is exacerbated when the male mating rate is low. We suggest that researchers should consider the potential for ecologically beneficial side effects of selfish genetic elements, especially in light of proposals to use meiotic drive for biological control.

Funder

Physical Sciences Research Council studentship

Engineering and Physical Sciences Research Council

Natural Environment Research Council

Biotechnology and Biological Sciences Research Council

Leverhulme Trust Early Career Fellowship

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3