A mushroom-inducing DNA sequence isolated from the Basidiomycete, Schizophyllum commune.

Author:

Horton J S,Raper C A

Abstract

Abstract A DNA sequence capable of inducing the de novo development of fruiting bodies (mushrooms) when integrated into the genome of unmated, nonfruiting strains of the Basidiomycete Schizophyllum commune has been isolated and partially characterized. This sequence, designated FRT1, overrides the normal requirement of a mating interaction for fruiting in this organism. It has been shown to integrate stably in different chromosome locations and appears to be trans-acting. It also enhances the normal process of fruiting that occurs after mating. Additional DNA sequences with similarity to FRT1 were detected within the genome of the strain of origin by hybridization of labeled FRT1 DNA to blots of digested genomic DNAs. FRT1 and the genomic sequences similar to it were shown to be genetically linked. Southern hybridization experiments suggested sequence divergence at the FRT1 locus between different strains of S. commune. A testable model for how FRT1 may act as a key element in the pathway for the differentiation of fruiting bodies is presented as a working hypothesis for further investigation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3