A Genetic Screen for Synaptic Transmission Mutants Mapping to the Right Arm of Chromosome 3 in Drosophila

Author:

Babcock Michael C1,Stowers R Steven2,Leither Jennifer1,Goodman Corey S2,Pallanck Leo J1

Affiliation:

1. Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730

2. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720

Abstract

Abstract Neuronal function depends upon the proper formation of synaptic connections and rapid communication at these sites, primarily through the regulated exocytosis of chemical neurotransmitters. Recent biochemical and genomic studies have identified a large number of candidate molecules that may function in these processes. To complement these studies, we are pursuing a genetic approach to identify genes affecting synaptic transmission in the Drosophila visual system. Our screening approach involves a recently described genetic method allowing efficient production of mosaic flies whose eyes are entirely homozygous for a mutagenized chromosome arm. From a screen of 42,500 mutagenized flies, 32 mutations on chromosome 3R that confer synaptic transmission defects in the visual system were recovered. These mutations represent 14 complementation groups, of which at least 9 also appear to perform functional roles outside of the eye. Three of these complementation groups disrupt photoreceptor axonal projection, whereas the remaining complementation groups confer presynaptic defects in synaptic transmission without detectably altering photoreceptor structure. Mapping and complementation testing with candidate mutations revealed new alleles of the neuronal fate determinant svp and the synaptic vesicle trafficking component lap among the collection of mutants recovered in this screen. Given the tools available for investigation of synaptic function in Drosophila, these mutants represent a valuable resource for future analysis of synapse development and function.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3