Affiliation:
1. Unité Microbiologie et Environnement, CNRS URA 2172
2. Unité des Aspergillus
3. Laboratoire de Génomique des Micro-Organismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
4. Aventis CropScience, Biochemistry and Molecular Biology Department, 69009 Lyon, France
Abstract
Abstract
We have evaluated the usefulness of parasexual genetics in the identification of genes essential for the growth of the human fungal pathogen Aspergillus fumigatus. First, essentiality of the A. fumigatus AfFKS1 gene, encoding the catalytic subunit of the β-(1,3)-glucan synthase complex, was assessed by inactivating one allele of AfFKS1 in a diploid strain of A. fumigatus obtained using adequate selectable markers in spore color and nitrate utilization pathways and by performing haploidization under conditions that select for the occurrence of the disrupted allele. Haploid progeny could not be obtained, demonstrating that AfFKS1 and, hence, β-(1,3)-glucan synthesis are essential in A. fumigatus. Second, random heterozygous insertional mutants were generated by electroporation of diploid conidia with a heterologous plasmid. A total of 4.5% of the transformants failed to produce haploid progeny on selective medium. Genomic analysis of these heterozygous diploids led in particular to the identification of an essential A. fumigatus gene encoding an SMC-like protein resembling one in Schizosacccharomyces pombe involved in chromosome condensation and cohesion. However, significant plasmid and genomic DNA rearrangements were observed at many of the identified genomic loci where plasmid integration had occurred, thus suggesting that the use of electroporation to build libraries of A. fumigatus insertional mutants has relatively limited value and cannot be used in an exhaustive search of essential genes.
Publisher
Oxford University Press (OUP)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献