Physical and genetic characterization of a 75-kilobase deletion associated with al, a recessive lethal allele at the mouse agouti locus.

Author:

Barsh G S,Epstein C J

Abstract

Abstract The agouti locus (A) of the mouse determines the timing and type of pigment deposition in the growing hair bulb, and several alleles at this locus are lethal when homozygous. Apparent instances of intragenic recombination and complementation between different recessive lethal alleles have suggested that the locus has a complex structure. We have begun to investigate the molecular basis of agouti gene action and recessive lethality by using a series of genetically linked DNA probes and pulsed field gel electrophoresis to detect structural alterations in radiation-induced agouti mutations. Hybridization probes from the Src and Emv-15 loci do not reveal molecular alterations in DNA corresponding to the ae, ax, and al alleles, but a probe from the parotid secretory protein gene (Psp) detects a 75-kilobase (kb) deletion in DNA containing the non-agouti lethal allele (al). The deletion is defined by a 75-kb reduction in the size of BssHII, NotI, NruI and SacII high molecular weight restriction fragments detected with the Psp probe and is located between 25 kb and 575 kb from Psp coding sequences. Because the genetic distance between A and Emv-15 is much less than A and Psp, there may be a preferred site of recombination close to Psp, or suppression of recombination between A and Emv-15. The al deletion has allowed us to determine the genotype of mice heterozygous for different recessive lethal alleles. We find that three different recessive lethal complementation groups are present at the agouti locus, two of which are contained within the al deletion.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3