BEHAVIORAL AND BIOCHEMICAL DEFECTS IN TEMPERATURE-SENSITIVE ACETYLCHOLINESTERASE MUTANTS OF DROSOPHILA MELANOGASTER

Author:

Hall Jeffrey C1,Alahiotis Stamatis N1,Strumpf David A1,White Kristin1

Affiliation:

1. Department of Biology, Brandeis University, Waltham, MA 02254

Abstract

ABSTRACT Temperature-sensitive (ts) mutants of the Ace gene, which codes for acetylcholinesterase (AChE) in Drosophila melanogaster, were analyzed for defects in viability, behavior and function of the enzyme. The use of heat-sensitive and cold-sensitive mutations permited the function of AChE in the nervous system to be analyzed temporally. All ts mutations were lethal, or nearly so, when animals expressing them were subjected to restrictive temperatures during late embryonic and very early larval stages. Heat treatments to Ace-ts mid- and late larvae had little effect on the behavior of these animals or on the viability or behavior of the eventual adults. Heat-sensitive mutants exposed to nonpermissive temperatures as pupae, by contrast, had severe defects in phototaxis and locomotor activity as adults. AChE extracted from adult ts mutants that had developed at a permissive temperature were abnormally heat labile, and they had reduced substrate affinity when assayed at restrictive temperatures. However, enzyme activity did not decline during exposure of heat-sensitive adults to high temperatures even though such treatments caused decrements in phototaxis (29°) and, eventually, cessation of movement (31°). The cold-sensitive mutant also produced readily detectable levels of AChE when exposed to a restrictive temperature during the early developmental stage when this mutation causes almost complete lethality. We suggest that the relationship among the genetic, biochemical and neurobiological defects in these mutants may involve more than merely temperature-sensitive catalytic functions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3