DISTRIBUTION OF NONSTRUCTURAL VARIATION BETWEEN WHEAT CULTIVARS ALONG CHROMOSOME ARM 6Bp: EVIDENCE FROM THE LINKAGE MAP AND PHYSICAL MAP OF THE ARM

Author:

Dvořák Jan1,Chen Kuey-Chu2

Affiliation:

1. Department of Agronomy, University of California, Davis, California 95616

2. Department of Range Science, University of California, Davis, California 95616

Abstract

ABSTRACT Metaphase I (MI) pairing of homologous chromosomes in wheat intercultivar hybrids (heterohomologous chromosomes) is usually reduced relative to that within the inbred parental cultivars (euhomologous chromosomes). It was proposed elsewhere that this phenomenon is caused by polymorphism in nucleotide sequences (nonstructural chromosome variation) among wheat cultivars. The distribution of this polymorphism along chromosome arm 6Bp (=6BS) of cultivars Chinese Spring and Cheyenne was investigated. A population of potentially recombinant chromosomes derived from crossing over between telosome 6Bp of Chinese Spring and Cheyenne chromosome 6B was developed in the isogenic background of Chinese Spring. The approximate length of the Chinese Spring segment present in each of these chromosomes was assessed by determining for each chromosome the interval in which crossing over occurred (utilizing the rRNA gene region, a distal C-band and the gliadin gene region as markers). The MI pairing frequencies of these chromosomes (only the complete chromosomes were used) with the normal Chinese Spring telosome 6Bp were determined. These were directly proportional to the length of the euhomologous segment. The longer the incorporated euhomologous segment the better was the MI pairing. This provided evidence that the heterohomologous chromosomes are differentiated from each other in numerous sites distributed throughout the arm.—The comparison of the physical map of arm 6Bp with the linkage map showed a remarkable distortion of the linkage map; no crossing over was detected in the proximal 68% of the arm. A population of 49 recombinant chromosomes was assayed for recombination within the rRNA gene region, but none was detected. No new length variants of the nontranscribed spacer separating the 18S and 26S rRNA genes were detected either.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3