The geometry of admixture in population genetics: the blessing of dimensionality

Author:

Oteo José-Angel12,Oteo-García Gonzalo34ORCID

Affiliation:

1. Departament de Física Teòrica, Universitat de València , Burjassot, Valencia 46100 , Spain

2. Institute for Integrative Systems Biology , Paterna, Valencia 46980 , Spain

3. Dipartamento di Biologia Ambientale, Sapienza Università di Roma , Rome 00185 , Italy

4. Centre for Palaeogenetics and Department of Archaeology and Classical Studies, Stockholm University , Stockholm SE-106 91 , Sweden

Abstract

Abstract We present a geometry-based interpretation of the f-statistics framework, commonly used in population genetics to estimate phylogenetic relationships from genomic data. The focus is on the determination of the mixing coefficients in population admixture events subject to post-admixture drift. The interpretation takes advantage of the high dimension of the dataset and analyzes the problem as a dimensional reduction issue. We show that it is possible to think of the f-statistics technique as an implicit transformation of the genomic data from a phase space into a subspace where the mapped data structure is more similar to the ancestral admixture configuration. The 2-way mixing coefficient is, as a matter of fact, carried out implicitly in this subspace. In addition, we propose the admixture test to be evaluated in the subspace because the comparison with the conventional one provides an important assessment of the admixture model. The overarching geometric framework provides slightly more general formulas than the f-formalism by using a different rationale as a starting point. Explicitly addressed are 2- and 3-way admixtures. The mixture proportions are provided by suitable linear fits, in 2 or 3 dimensions, that can be easily visualized. The difficulties encountered with introgression and gene flow are also addressed. The developments and findings are illustrated with numerical simulations and real-world cases.

Funder

Spanish Ministerio de Ciencia, Innovación y Universidades (MICIU)–Agencia Estatal de Investigación and by Conselleria d’Innovació

European Union’s Horizon 2020

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3