ABSENCE OF DETECTABLE MITOCHONDRIAL RECOMBINATION IN PARAMECIUM

Author:

Adoutte André1,Knowles Jonathan K1,Sainsard-Chanet Annie1

Affiliation:

1. Centre de Génétique Moléculaire du CNRS, 91190 Gif-sur-Yvette, France

Abstract

ABSTRACT An extensive search for recombination between mitochondrial markers was carried out in Paramecium tetraurelia. Thirty-two combinations, altogether involving 24 different markers, were studied. The markers belonged to the three main categories of mitochondrial mutations presently available in this organism. (a) Spontaneous or UV-induced antibiotic resistance mutations, most probably affecting mitochondrial ribosomes, (b) nitrowguanidine-induced antibiotic resistance markers displaying thermosensitivity or slow growth, enabling easy selection of possible wild-type recombinants, and (c) mitochondrial partial suppressors of a nuclear gene, probably corresponding to molecular alterations distinct from the preceding two categories. In addition, different genetic configurations were analyzed (i e., mutant x mutant, double-mutant x wild-type, etc.).——None of the combinations yielded any evidence for the occurrence of recombined genomes despite the fact that: (1) all of them were studied on a large scale involving the screening of at least several thousand mitochondrial genomes (often several millions), (2) in many of them the detection level was sufficiently high to enable the isolation of spontaneous mutants in control cells, and (3) in several of them, reconstitution experiments carried out in parallel show that the conditions were fully adequate to detect recombinant genotypes. The results are in marked contrast with those obtained on the few other organisms in which mitochondrial recombination has been studied, particularly Saccharomyces cerevisiae, in which mitochondrial recombination is intense.——The most likely basis for the various manifestations of mitochondrial genetic autonomy in Paramecium, described in this as well as in previous publications, is that the chondriome of this organism is made up of thousands of structurally discrete, noninteracting units.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3