Aspects of the Ultraviolet Photobiology of Some T-Even Bacteriophages

Author:

Smith Leslie A1,Drake John W1

Affiliation:

1. Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233

Abstract

Abstract Bacteriophage T4 DNA metabolism is largely insulated from that of its host, although some host functions assist in the repair of T4 DNA damage. Environmental factors sometimes affect survival and mutagenesis after ultraviolet (UV) irradiation of T4, and can affect mutagenesis in many organisms. We therefore tested the effect of certain environmental factors and host genetic defects upon spontaneous and UV-induced mutagenesis and survival in T4 and some related T-even phages. Plating at pH 9 enhances UV resistance in T4 by about 14% compared to pH 7. The host cAMP regulatory system affects host survival after UV irradiation but does not affect T4 survival. Thermal rescue, the increasing survival of irradiated T4 with increasing plating temperature, occurs also in phage T6, but only weakly in phages T2 and RB69; this temperature effect is not altered by supplementing infected cells with additional Holliday resolvase (gp49) early in infection. Phage RB69 turns out to have almost 50% greater UV resistance than T4, but has a genome of about the same size; RB69 is UV-mutable but does not produce r mutants, which are easily seen in T2, T4, and T6. Spontaneous mutagenesis in T4 shows no dependence on medium and little dependence on temperature overall, but mutation rates can increase and probably decrease with temperature at specific sites. UV mutagenesis is not affected by incubating irradiated particles under various conditions before plating, in contrast to phage S13.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3