The DNA replication protein Orc1 from the yeast Torulaspora delbrueckii is required for heterochromatin formation but not as a silencer-binding protein

Author:

Maria Haniam1ORCID,Rusche Laura N1ORCID

Affiliation:

1. Department of Biological Sciences, State University of New York at Buffalo , Buffalo NY 14260, USA

Abstract

Abstract To understand the process by which new protein functions emerge, we examined how the yeast heterochromatin protein Sir3 arose through gene duplication from the conserved DNA replication protein Orc1. Orc1 is a subunit of the origin recognition complex (ORC), which marks origins of DNA replication. In Saccharomyces cerevisiae, Orc1 also promotes heterochromatin assembly by recruiting the structural proteins Sir1-4 to silencer DNA. In contrast, the paralog of Orc1, Sir3, is a nucleosome-binding protein that spreads across heterochromatic loci in conjunction with other Sir proteins. We previously found that a nonduplicated Orc1 from the yeast Kluyveromyces lactis behaved like ScSir3 but did not have a silencer-binding function like ScOrc1. Moreover, K. lactis lacks Sir1, the protein that interacts directly with ScOrc1 at the silencer. Here, we examined whether the emergence of Sir1 coincided with Orc1 acting as a silencer-binding protein. In the nonduplicated species Torulaspora delbrueckii, which has an ortholog of Sir1 (TdKos3), we found that TdOrc1 spreads across heterochromatic loci independently of ORC, as ScSir3 and KlOrc1 do. This spreading is dependent on the nucleosome binding BAH domain of Orc1 and on Sir2 and Kos3. However, TdOrc1 does not have a silencer-binding function: T. delbrueckii silencers do not require ORC-binding sites to function, and Orc1 and Kos3 do not appear to interact. Instead, Orc1 and Kos3 both spread across heterochromatic loci with other Sir proteins. Thus, Orc1 and Sir1/Kos3 originally had different roles in heterochromatin formation than they do now in S. cerevisiae.

Funder

National Science Foundation (MCB

Mark Diamond Research Fund of the Graduate Student Association at the University at Buffalo

State University of New York

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3