Mutations in abnormal spindle disrupt temporal transcription factor expression and trigger immune responses in the Drosophila brain

Author:

Mannino Maria C1,Cassidy Mercedes Bartels1,Florez Steven1,Rusan Zeid2,Chakraborty Shalini1,Schoborg Todd1

Affiliation:

1. Department of Molecular Biology, University of Wyoming , Laramie, WY 82071 , USA

2. Personalis, Inc. , Fremont, CA 94555 , USA

Abstract

Abstract The coordination of cellular behaviors during neurodevelopment is critical for determining the form, function, and size of the central nervous system (CNS). Mutations in the vertebrate Abnormal Spindle-Like, Microcephaly Associated (ASPM) gene and its Drosophila melanogaster ortholog abnormal spindle (asp) lead to microcephaly (MCPH), a reduction in overall brain size whose etiology remains poorly defined. Here, we provide the neurodevelopmental transcriptional landscape for a Drosophila model for autosomal recessive primary microcephaly-5 (MCPH5) and extend our findings into the functional realm to identify the key cellular mechanisms responsible for Asp-dependent brain growth and development. We identify multiple transcriptomic signatures, including new patterns of coexpressed genes in the developing CNS. Defects in optic lobe neurogenesis were detected in larval brains through downregulation of temporal transcription factors (tTFs) and Notch signaling targets, which correlated with a significant reduction in brain size and total cell numbers during the neurogenic window of development. We also found inflammation as a hallmark of asp mutant brains, detectable throughout every stage of CNS development, which also contributes to the brain size phenotype. Finally, we show that apoptosis is not a primary driver of the asp mutant brain phenotypes, further highlighting an intrinsic Asp-dependent neurogenesis promotion mechanism that is independent of cell death. Collectively, our results suggest that the etiology of the asp mutant brain phenotype is complex and that a comprehensive view of the cellular basis of the disorder requires an understanding of how multiple pathway inputs collectively determine tissue size and architecture.

Funder

National Institutes Health

USDA National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3