Affiliation:
1. Department of Botany and Plant Sciences, University of California, Riverside, California 92521
Abstract
Abstract
The classical understanding of recombination is that in large asexual populations with multiplicative fitness, linkage disequilibrium is negligible, and thus there is no selective agent driving an allele for recombination. This has led researchers to recognize the importance of synergistic epistatic selection in generating negative linkage disequilibrium that thereby renders an advantage to recombination. Yet data on such selection is equivocal, and various works have shown that synergistic epistasis per se, when left unquantified in its magnitude or operation, is not sufficient to drive the evolution of recombination. Here we show that neither it, nor any mechanism generating negative linkage disequilibrium among fitness-related loci, is necessary. We demonstrate that a neutral gene for recombination can increase in frequency in a large population under a low mutation rate and strict multiplicative fitness. We work in a parameter range where individuals have, on average, less than one mutation each, yet recombination can still evolve. We demonstrate this in two ways: first, by examining the consequences of recombination correlated with misrepaired DNA damage and, second, by increasing the probability of recombination with declining fitness. Interestingly, the allele spreads without repairing even a single DNA mutation.
Publisher
Oxford University Press (OUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献