Abstract
Abstract
The high growth locus (hg) causes a major increase in weight gain and body size in mice. As a first step to map-based cloning of hg, we developed a genetic map of the hg-containing region using interval mapping of 403 F2 from a C57BL/6J-hghg x CAST/EiJ cross. The maximum likelihood position of hg was at the chromosome 10 marker D10Mit41 (LOD = 24.8) in the F2 females and 1.5 cM distal to D10Mit41 (LOD = 9.56) in the F2 males with corresponding LOD 2 support intervals of 3.7 and 5.4 cM, respectively. The peak LOD scores were significantly higher than the estimated empirical threshold LOD values. The localization of hg by interval mapping was supported by a test cross of F2 mice recombinant between the LOD 2 support interval and the flanking marker. The interval mapping and test-cross results indicate that hg is not allelic with candidate genes Igf1 or decorin (Dcn), a gene that was mapped close to hg in this study. The hg inheritance was recessive in females, although we could not reject recessive or additive inheritance in males. Possible causes for sex differences in peak LOD scores and for the distortion of transmission ratios observed in F2 males are discussed. The genetic map of the hg region will facilitate further fine mapping and cloning of hg, and allow searches for a homologous quantitative trait locus affecting growth in humans and domestic animals.
Publisher
Oxford University Press (OUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献