A modERN resource: identification ofDrosophilatranscription factor candidate target genes using RNAi

Author:

Fisher William W1,Hammonds Ann S1,Weiszmann Richard1,Booth Benjamin W1,Gevirtzman Louis2,Patton Jaeda E J2,Kubo Connor A2,Waterston Robert H2,Celniker Susan E1

Affiliation:

1. Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, CA 94720 , USA

2. Department of Genome Sciences, University of Washington School of Medicine , Seattle, WA 98195 , USA

Abstract

AbstractTranscription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change −3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.

Funder

National Human Genome Research Institute

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3