Affiliation:
1. Department of Molecular Biology, University of California, Berkeley, California 94720
Abstract
ABSTRACT
The site-specific recombination at the attachment site for prophage integration might proceed by two general mechanisms: (1) a concerted reaction with-out a free intermediate; (2) a sequential mechanism differing from typical general recombination only by an inability of the cross-strand intermediate structure to migrate into the region of nonhomology adjacent to the attachment site. The blocked-migration, sequential model predicts frequent genetic exchange in the int xis region near the attachment site if Int-mediated recombination occurs between λ phage with homologous attachment sites. We fiid such additional int xis exchanges, but only at very low frequency (1% of the Int-mediated recombination). We conclude that the resolution point only rarely moves away from the initial crossover point specified by Int and, therefore, that the Int reaction is mainly concerted. We interpret the rare additional int xis recombinants as indicative of occasional branch migration from an initial Int-mediated crossover. The frequency of the rare int xis recombinants is not simply related to distance from thp attachment site to an int - or xis - mutation, suggesting that the heteroduplex distance is often at least a gene in length. The frequency of these additional exchanges is also not a strong function of distance between two mutations; from this we conclude that the resolution to the observed recombinant structure in the sequential cases occurs often by mismatch repair. We have found no marked effect of mutations in the bacterial recA, recB, recC, recF, or recL genes on the frequency of the int xis recombinants; this may indicate that none of these genes specifies a product uniquely required for resolution of a cross-strand intermediate.
Publisher
Oxford University Press (OUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献