Mutations Synthetically Lethal with cep1 Target S. cerevisiae Kinetochore Components

Author:

Baker Richard E1,Harris Kendra1,Zhang Keming1

Affiliation:

1. Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Abstract

Abstract CP1 (encoded by CEP1) is a Saccharomyces cerevisiae chromatin protein that binds a DNA element conserved in centromeres and in the 5′-flanking DNA of methionine biosynthetic (MET) genes. Strains lacking CP1 are defective in chromosome segregation and MET gene transcription, leading to the hypothesis that CP1 plays a general role in assembling higher order chromatin structures at genomic sites where it is bound. A screen for mutations synthetically lethal with a cep1 null allele yielded five recessive csl (cep1 synthetic lethal) mutations, each defining a unique complementation group. Four of the five mutations synergistically increased the loss rate of marker chromosomes carrying a centromere lacking the CP1 binding site, suggesting that the cep1 synthetic lethality was due to chromosome segregation defects. Three of these four CSL genes were subsequently found to be known or imputed kinetochore genes: CEP3, NDC10, and CSE4. The fourth, CSL4, corresponded to ORF YNL232w on chromosome XIV, and was found to be essential. A human cDNA was identified that encoded a protein homologous to Csl4 and that complemented the csl4-1 mutation. The results are consistent with the view that the major cellular role of CP1 is to safeguard the biochemical integrity of the kinetochore.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference57 articles.

1. Issues in searching molecular sequence databases;Altschul;Nat. Genet.,1994

2. Basic local alignment search tool;Altschul;J. Mol. Biol.,1990

3. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site;Baker;J. Biol. Chem.,1989

4. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1;Baker;Mol. Cell. Biol.,1990

5. Is therea unique form of chromatin at the Saccharomyces cerevisiae centromere?;Basrai;Bioessays,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3