Permissiveness and competition within and between Neurospora crassa syncytia

Author:

Mela Alexander P1,Glass N Louise12ORCID

Affiliation:

1. The Plant and Microbial Biology Department, University of California Berkeley , Berkeley, CA 94720 , USA

2. The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory , Berkeley, CA 94720 , USA

Abstract

Abstract A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a “winner-takes-all” phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference114 articles.

1. Asexual sporulation in Aspergillus nidulans;Adams;Microbiol Mol Biol Rev,1998

2. The [poky] mutant of Neurospora contains a 4-base-pair deletion at the 5′ end of the mitochondrial small rRNA;Akins;Proc Natl Acad Sci U S A,1984

3. Allorecognition genes drive reproductive isolation in Podospora anserina;Ament-Velásquez;Nat Ecol Evol,2022

4. Clonal evolution and genome stability in a 2500-year-old fungal individual;Anderson;Proc Biol Sci,2018

5. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters;Bastiaans;Nat Commun,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3