Genetic control of the error-prone repair of a chromosomal double-strand break with 5′ overhangs in yeast

Author:

Shaltz Samantha1,Jinks-Robertson Sue1

Affiliation:

1. Department of Molecular Genetics and Microbiology, Duke University , Durham, NC 27710 , USA

Abstract

Abstract A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous end joining (NHEJ) pathway when homologous recombination is not an option. A zinc finger nuclease cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5′ overhangs. Repair events that destroyed the cleavage site were identified either as Lys+ colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys+ events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol ζ and Pol η. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required translesion synthesis polymerases as well as the exonuclease activity of the replicative Pol δ DNA polymerase. Survivors were equally split between NHEJ events and 1.2 or 11.7 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1–Rad10 endonuclease for the removal of presumptive 3′ tails. Finally, NHEJ was more efficient in nongrowing than in growing cells and was most efficient in G0 cells. These studies provide novel insights into the flexibility and complexity of error-prone DSB repair in yeast.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3