Synergistic roles of homeodomain proteins UNC-62 homothorax and MLS-2 HMX/NKX in the specification of olfactory neurons in Caenorhabditis elegans

Author:

Hsieh Yi-Wen1,Xiong Rui1,Chuang Chiou-Fen12ORCID

Affiliation:

1. Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA

2. Graduate Program in Neuroscience, University of Illinois at Chicago, IL 60607, USA

Abstract

Abstract General identity of the Caenorhabditis elegans AWC olfactory neuron pair is specified by the OTX/OTD transcription factor CEH-36 and the HMG-box transcription factor SOX-2, followed by asymmetrical differentiation of the pair into two distinct subtypes, default AWCOFF and induced AWCON, through a stochastic signaling event. The HMX/NKX transcription factor MLS-2 regulates the expression of ceh-36 to specify general AWC identity. However, general AWC identity is lost in only one of the two AWC cells in the majority of mls-2 null mutants displaying defective general AWC identity, suggesting that additional transcription factors have a partially overlapping role with MLS-2 in the specification of general AWC identity. Here, we identify a role of unc-62, encoding a homothorax/Meis/TALE homeodomain protein, in the specification of general AWC identity. As in mls-2 null mutants, unc-62 null mutants showed an incomplete penetrance in loss of general AWC identity. However, unc-62; mls-2 double mutants display a nearly complete penetrance of identity loss in both AWC cells. Thus, unc-62 and mls-2 have a partially overlapping function in the specification of general AWC identity. Furthermore, our genetic results suggest that mls-2 and unc-62 act cell autonomously in promoting the AWCON subtype. Together, our findings reveal the sequential roles of the unc-62 and mls-2 pair in AWC development, specification of general AWC identity in early embryogenesis, and asymmetric differentiation of AWC subtypes in late embryogenesis.

Funder

NIH Office of Research Infrastructure Programs

National Institutes of Health Organogenesis Training

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3