Affiliation:
1. Animal Genetics and Breeding Unit,2 University of New England, Armidale, New South Wales 2351, Australia
Abstract
Abstract
Experiments to map QTL usually measure several traits, and not uncommonly genotype only those animals that are extreme for some trait(s). Analysis of selectively genotyped, multiple-trait data presents special problems, and most simple methods lead to biased estimates of the QTL effects. The use of logistic regression to estimate QTL effects is described, where the genotype is treated as the dependent variable and the phenotype as the independent variable. In this way selection on phenotype does not bias the results. If normally distributed errors are assumed, the logistic-regression analysis is almost equivalent to a maximum-likelihood analysis, but can be carried out with standard statistical packages. Analysis of a simulated half-sib experiment shows that logistic regression can estimate the effect and position of a QTL without bias and confirms the increased power achieved by multiple-trait analysis.
Publisher
Oxford University Press (OUP)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献