The Problem of Counting Sites in the Estimation of the Synonymous and Nonsynonymous Substitution Rates: Implications for the Correlation Between the Synonymous Substitution Rate and Codon Usage Bias

Author:

Bierne Nicolas1,Eyre-Walker Adam1

Affiliation:

1. Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom

Abstract

Abstract Most methods for estimating the rate of synonymous and nonsynonymous substitution per site define a site as a mutational opportunity: the proportion of sites that are synonymous is equal to the proportion of mutations that would be synonymous under the model of evolution being considered. Here we demonstrate that this definition of a site can give misleading results and that a physical definition of site should be used in some circumstances. We illustrate our point by reexamining the relationship between codon usage bias and the synonymous substitution rate. It has recently been shown that the rate of synonymous substitution, calculated using the Goldman-Yang method, which encapsulates the mutational-opportunity definition of a site at a high level of sophistication, is either positively correlated or uncorrelated to synonymous codon bias in Drosophila. Using other methods, which account for synonymous codon bias but define a site physically, we show that there is a negative correlation between the synonymous substitution rate and codon bias and that the lack of a negative correlation using the Goldman-Yang method is due to the way in which the number of synonymous sites is counted. We also show that there is a positive correlation between the synonymous substitution rate and third position GC content in mammals, but that the relationship is considerably weaker than that obtained using the Goldman-Yang method. We argue that the Goldman-Yang method is misleading in this context and conclude that methods that rely on a mutational-opportunity definition of a site should be used with caution.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3