A Sensitized Genetic Screen to Identify Novel Regulators and Components of the Drosophila Janus Kinase/Signal Transducer and Activator of Transcription Pathway

Author:

Bach Erika A123,Vincent Stephane1,Zeidler Martin P1,Perrimon Norbert12

Affiliation:

1. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115

2. Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115

3. Department of Pharmacology, New York University School of Medicine, New York, New York 10016

Abstract

Abstract The JAK/STAT pathway exerts pleiotropic effects on a wide range of developmental processes in Drosophila. Four key components have been identified: Unpaired, a secreted ligand; Domeless, a cytokine-like receptor; Hopscotch, a JAK kinase; and Stat92E, a STAT transcription factor. The identification of additional components and regulators of this pathway remains an important issue. To this end, we have generated a transgenic line where we misexpress the upd ligand in the developing Drosophila eye. GMR-upd transgenic animals have dramatically enlarged eye-imaginal discs and compound eyes that are normally patterned. We demonstrate that the enlarged-eye phenotype is a result of an increase in cell number, and not cell volume, and arises from additional mitoses in larval eye discs. Thus, the GMR-upd line represents a system in which the proliferation and differentiation of eye precursor cells are separable. Removal of one copy of stat92E substantially reduces the enlarged-eye phenotype. We performed an F1 deficiency screen to identify dominant modifiers of the GMR-upd phenotype. We have identified 9 regions that enhance this eye phenotype and two specific enhancers: C-terminal binding protein and Daughters against dpp. We also identified 20 regions that suppress GMR-upd and 13 specific suppressors: zeste-white 13, pineapple eye, Dichaete, histone 2A variant, headcase, plexus, kohtalo, crumbs, hedgehog, decapentaplegic, thickveins, saxophone, and Mothers against dpp.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3