Molecular Evolution of Two Linked Genes, Est-6 and Sod, in Drosophila melanogaster

Author:

Balakirev Evgeniy S123,Balakirev Elena I1,Rodríguez-Trelles Francisco14,Ayala Francisco J1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525

2. Institute of Marine Biology, Vladivostok 690041, Russia

3. Department of General Biology, Ecology and Soils, Far Eastern State University, Vladivostok 690600, Russia

4. Departament de Genética, Universitat Autónoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

Abstract

Abstract We have obtained 15 sequences of Est-6 from a natural population of Drosophila melanogaster to test whether linkage disequilibrium exists between Est-6 and the closely linked Sod, and whether natural selection may be involved. An early experiment with allozymes had shown linkage disequilibrium between these two loci, while none was detected between other gene pairs. The Sod sequences for the same 15 haplotypes were obtained previously. The two genes exhibit similar levels of nucleotide polymorphism, but the patterns are different. In Est-6, there are nine amino acid replacement polymorphisms, one of which accounts for the S-F allozyme polymorphism. In Sod, there is only one replacement polymorphism, which corresponds to the S-F allozyme polymorphism. The transversion/transition ratio is more than five times larger in Sod than in Est-6. At the nucleotide level, the S and F alleles of Est-6 make up two allele families that are quite different from each other, while there is relatively little variation within each of them. There are also two families of alleles in Sod, one consisting of a subset of F alleles, and the other consisting of another subset of F alleles, designed F(A), plus all the S alleles. The Sod F(A) and S alleles are completely or nearly identical in nucleotide sequence, except for the replacement mutation that accounts for the allozyme difference. The two allele families have independent evolutionary histories in the two genes. There are traces of statistically significant linkage disequilibrium between the two genes that, we suggest, may have arisen as a consequence of selection favoring one particular sequence at each locus.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3