Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast

Author:

Dash Suman1,Joshi Sameer1ORCID,Pankajam Ajith V1,Shinohara Akira2ORCID,Nishant Koodali T13

Affiliation:

1. School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram , Trivandrum 695551 , India

2. Institute for Protein Research, Osaka University , Osaka 565-0871 , Japan

3. Center for High-Performance Computing, Indian Institute of Science Education and Research Thiruvananthapuram , Trivandrum 695551 , India

Abstract

Abstract Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4–Msh5 heterodimer is an evolutionarily conserved mismatch repair–related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4–Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4–Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4–Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.

Funder

Department of Science and Technology

Indian Institute of Science Education and Research Thiruvananthapuram

DST INSPIRE

University Grants Commission

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3