METABOLISM OF RIBOSOMAL RNA IN MUTANTS OF ESCHERICHIA COLI DOUBLY DEFECTIVE IN RIBONUCLEASE III AND THE TRANSCRIPTION TERMINATION FACTOR RHO

Author:

Apirion David1,Neil Jeff1,Ko Thong-Sung1,Watson Ned1

Affiliation:

1. Department of Microbiology and Immunology, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

ABSTRACT To determine if proteins RNase III and rho, both of which can determine the 3' ends of RNA molecules, can complement each other, double mutants defective in these two factors were constructed. In all cases (four rho mutations tested) the double mutants were viable at lower temperatures, but were unable to grow at higher temperatures at which both of the parental strains grew. Genetic analyses suggested that the combination of the rnc rho (RNase III-Rho-) mutations was necessary and probably sufficient to confer temperature sensitivity on carrier strains. Physiological studies showed that synthesis and maturation of rRNA, which is greatly affected by RNase III, as well as other RNAs, was indistinguishable in rnc rho strains as compared to rnc rho  + strains, thus suggesting that RNase III and rho do not complement one another in determining the 3' ends of RNA molecules. In rnc rho strains, however, the newly synthesized rRNA failed to accumulate. Thus, decay of rRNA could be the reason for the temperature sensitivity of the double mutant strains. These experiments suggest that RNase III and rho can both protect rRNA from degradation by cellular ribonucleases. They also point to the possibility that the nucleotide sequences involved in the determination of the 3' ends of RNA molecules by these two factors are not identical.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mastering the control of the Rho transcription factor for biotechnological applications;Applied Microbiology and Biotechnology;2021-05

2. Degradation of Stable RNA in Bacteria;Journal of Biological Chemistry;2003-11

3. Characterization of the in vivo RNA product of the pOUT promoter of IS10R;Journal of Bacteriology;1985-11

4. RNA Processing in a Unicellular Microorganism: Implications for Eukaryotic Cells;Progress in Nucleic Acid Research and Molecular Biology;1983

5. Processing of procaryotic ribonucleic acid;Microbiological Reviews;1981-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3