Affiliation:
1. Cancérogénèse et Mutagénèse Moléculaire et Structurale, UPR 9003, CNRS, Pôle API, 67400 Strasbourg-Illkirch, France
Abstract
Abstract
The high level of polymorphism of microsatellites has been used for a variety of purposes such as positional cloning of genes associated with diseases, forensic medicine, and phylogenetic studies. The discovery that microsatellites are associated with human diseases, not only as markers of risk but also directly in disease pathogenesis, has triggered a renewed interest in understanding the mechanism of their instability. In this work we have investigated the role of DNA replication, long patch mismatch repair, and transcription on the genetic instability of all possible combinations of dinucleotide repeats in Escherichia coli. We show that the (GpC) and (ApT) self-complementary sequence repeats are the most unstable and that the mode of replication plays an important role in their instability. We also found that long patch mismatch repair is involved in avoiding both short deletion and expansion events and also in instabilities resulting from the processing of bulges of 6 to 8 bp for the (GpT/ApC)- and (ApG/CpT)-containing repeats. For each dinucleotide sequence repeat, we propose models for instability that involve the possible participation of unusual secondary structures.
Publisher
Oxford University Press (OUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献