Affiliation:
1. Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía , 41013 Sevilla , Spain
2. EMBL GeneCore , 69117 Heidelberg , Germany
Abstract
Abstract
Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the flippase (FLP) and cyclization recombination (Cre) enzymes has proved particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans. Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes, and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for green fluorescent fusion proteins based on FLP-mediated recombination. Using 2 stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RNA polymerase DamID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.
Funder
National Institutes of Health
Office of Research Infrastructure Programs
Spanish State Research Agency
European Union
European Regional Development Fund
Publisher
Oxford University Press (OUP)
Reference82 articles.
1. Coelomocyte system;Altun;WormAtlas,2005
2. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins;Armenti;Development,2014
3. mRNA editing, processing and quality control in Caenorhabditis elegans;Arribere;Genetics,2020
4. Genetic approaches to revealing the principles of nuclear architecture;Askjaer;Curr Opin Genet Dev,2021
5. Spatiotemporal control of genome recombination through combined FLP-Frt and GAL4-UAS technologies;Ayuso;MicroPubl Biol.,2019