Affiliation:
1. Department of Biology, Kyushu University, Fukuoka 812, Japan
Abstract
ABSTRACT
About 500 second and 500 third chromosomes were extracted, using the marked inversion technique, from the Orlando-Lake Placid, Florida, population. From the experiments using these chromosomes, the following findings were obtained: (1) The frequencies of lethal-carrying chromosomes were 0.37 in the second and 0.55 in the third chromosomes. (2) The size of the population was estimated to be effectively infinite, on the basis of the allelism rate of lethal-carrying chromosomes. (3) The detrimental and lethal loads for viability were, respectively, 0.40 and 0.45 for the second and 0.52 and 0.78 for the third chromosomes. Consequently, the detrimental to lethal load ratio is 0.90 for the second and 0.67 for the third chromosomes. (4) Lethal genes were shown to be deleterious when heterozygous. (5) The average degree of dominance for mildly deleterious genes (viability polygenes) was estimated to be nearly 0.5, although the confidence interval is large. (6) Additive (σ2 A) and dominance (σ2 D) variances of viability were estimated by using a partial diallel cross method. The results were (see PDF) and (see PDF) for the second chromosomes. (7) Environmental variances of viability were estimated. The result indicates that the heterozygotes are more homeostatic than the homozygotes. The most striking finding is that the additive variance is larger than expected on the classical hypothesis from the detrimental load. Several possible explanations for the discrepancy are offered. The most likely cause, we suggest, is genotype-environment interaction (diversifying selection) acting on viability polygenes. Overdominance is inconsistent with the low dominance variance, and frequency-dependent selection also appears unlikely as an explanation.
Publisher
Oxford University Press (OUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献