On the Consistency of a Physical Mapping Method to Reconstruct a Chromosome in Vitro

Author:

Xiong Momaio1,Chen Hubert J2,Prade Rolf A3,Wang Yuhong4,Griffith James5,Timberlake William E6,Arnold Jonathan5

Affiliation:

1. Department of Mathematics and Molecular Biology, University of Southern California, Los Angeles, California 90089

2. Department of Statistics, University of Georgia, Athens, Georgia 30602

3. Department Of Microbiology And Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078

4. Department of Molecular Biology, Jilin University, Chang Chun 130023, People’s Republic of China

5. Department of Genetics, University of Georgia, Athens, Georgia 30602, and

6. Myco Pharmaceuticals, Inc., Cambridge, Massachusetts 02139

Abstract

During recent years considerable effort has been invested in creating physical maps for a variety of organisms as part of the Human Genome Project and in creating various methods for physical mapping. The statistical consistency of a physical mapping method to reconstruct a chromosome, however, has not been investigated. In this paper, we first establish that a model of physical mapping by binary fingerprinting of DNA fragments is identifiable using the key assumption—for a large randomly generated recombinant DNA library, there exists a staircase of DNA fragments across the chromosomal region of interest. Then we briefly introduce epi-convergence theory of variational analysis and transform the physical mapping problem into a constrained stochastic optimization problem. By doing so, we prove epi-convergence of the physical mapping model and epi-convergence of the physical mapping method. Combining the identifiability of our physical mapping model and the epi-convergence of a physical mapping method, finally we establish strong consistency of a physical mapping method.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3