A network modeling approach provides insights into the environment-specific yield architecture of wheat

Author:

DeWitt Noah12ORCID,Guedira Mohammed1,Murphy Joseph Paul1,Marshall David2,Mergoum Mohamed3,Maltecca Christian4ORCID,Brown-Guedira Gina12ORCID

Affiliation:

1. Department of Crop and Soil Sciences, North Carolina State University , Raleigh, NC 27695, USA

2. Plant Science Research, USDA-ARS SEA , Raleigh, NC 27695, USA

3. Department of Crop and Soil Sciences, University of Georgia , Athens, GA 30602, USA

4. Department of Animal Science, North Carolina State University , Raleigh, NC 27695, USA

Abstract

Abstract Wheat (Triticum aestivum) yield is impacted by a diversity of developmental processes which interact with the environment during plant growth. This complex genetic architecture complicates identifying quantitative trait loci that can be used to improve yield. Trait data collected on individual processes or components of yield have simpler genetic bases and can be used to model how quantitative trait loci generate yield variation. The objectives of this experiment were to identify quantitative trait loci affecting spike yield, evaluate how their effects on spike yield proceed from effects on component phenotypes, and to understand how the genetic basis of spike yield variation changes between environments. A 358 F5:6 recombinant inbred line population developed from the cross of LA-95135 and SS-MPV-57 was evaluated in 2 replications at 5 locations over the 2018 and 2019 seasons. The parents were 2 soft red winter wheat cultivars differing in flowering, plant height, and yield component characters. Data on yield components and plant growth were used to assemble a structural equation model to characterize the relationships between quantitative trait loci, yield components, and overall spike yield. The effects of major quantitative trait loci on spike yield varied by environment, and their effects on total spike yield were proportionally smaller than their effects on component traits. This typically resulted from contrasting effects on component traits, where an increase in traits associated with kernel number was generally associated with a decrease in traits related to kernel size. In all, the complete set of identified quantitative trait loci was sufficient to explain most of the spike yield variation observed within each environment. Still, the relative importance of individual quantitative trait loci varied dramatically. Path analysis based on coefficients estimated through structural equation model demonstrated that these variations in effects resulted from both different effects of quantitative trait loci on phenotypes and environment-by-environment differences in the effects of phenotypes on one another, providing a conceptual model for yield genotype-by-environment interactions in wheat.

Funder

Agriculture and Food Research Initiative Competitive

USDA National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3