Saccharomyces cerevisiae rad51 Mutants Are Defective in DNA Damage-Associated Sister Chromatid Exchanges but Exhibit Increased Rates of Homology-Directed Translocations

Author:

Fasullo Michael12,Giallanza Peter1,Dong Zheng1,Cera Cinzia1,Bennett Thomas2

Affiliation:

1. Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208

2. Department of Radiotherapy, Loyola University Chicago, Maywood, Illinois 60153

Abstract

Abstract Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Δ5′ and his3-Δ3′::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Δ3′::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Δ3′::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference60 articles.

1. Semidominant suppressors of Srs2 helicase mutation of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins;Aboussekhra;Mol. Cell. Biol.,1992

2. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae;Bai;Genes Dev.,1996

3. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates;Bartsch;Mol. Cell. Biol.,2000

4. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51;Basile;Mol. Cell. Biol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3