Selection Intensity Against Deleterious Mutations in RNA Secondary Structures and Rate of Compensatory Nucleotide Substitutions

Author:

Innan Hideki1,Stephan Wolfgang2

Affiliation:

1. Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340

2. Department of Evolutionary Biology, University of Munich, 80333 Munich, Germany

Abstract

Abstract A two-locus model of reversible mutations with compensatory fitness interactions is presented; single mutations are assumed to be deleterious but neutral in appropriate combinations. The expectation of the time of compensatory nucleotide substitutions is calculated analytically for the case of tight linkage between sites. It is shown that selection increases the substitution time dramatically when selection intensity Ns > 1, where N is the diploid population size and s the selection coefficient. Computer simulations demonstrate that recombination increases the substitution time, but the effect of recombination is small when selection is weak. The amount of linkage disequilibrium generated in the process of compensatory substitution is also investigated. It is shown that significant linkage disequilibrium is expected to be rare in natural populations. The model is applied to the mRNA secondary structure of the bicoid 3′ untranslated region of Drosophila. It is concluded that average selection intensity Ns against single deleterious mutations is not likely to be much larger than 1.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3