DEVELOPMENTAL GENETICS OF MUTANTS THAT SPECIFY KNOTTED LEAVES IN MAIZE

Author:

Freeling Michael1,Hake Sarah1

Affiliation:

1. Department of Genetics, University of California Berkeley, California 94720

Abstract

ABSTRACT Of seven dominant knotted-leaf mutants tested, six mapped at or near Kn1 on the long arm of chromosome 1, and one was not linked to Kn1. Comparisons of phenotypes among these mutants allowed us to focus on a systematic abnormality: the parenchyma cells associated with lateral veins do not fully differentiate into bundle sheath, mesophyll or upper sclerenchyma. The more dramatic expression of Kn1 mutants–knots, ligule alterations and twisting–is sporadic and dependent on the time when the mutant acts in leaf primordium development. Using lw to mark leaf sectors that lose Kn1 following X-irradiation, we show that the knotted-leaf phenotype encoded by chromosome 1L is autonomous. Analysis of sectors lacking a particular Kn1 gene (Kn1-N2) suggests that Kn1 itself, rather than a linked modifier gene, is autonomous in the leaf primordium. Aneuploid studies using various translocations involving 1L and marked by Adh1 allozymes are compared. The Kn1 mutant appears to encode a "new" function or a considerable overproduction of an extant product in the leaf. Kn1/- 1L hypoploids either express knotted poorly or not at all; transvection is ruled out, but the cause for this modification of Kn1 expression is not yet known.—Our working hypothesis is that Kn1 mutants permit the expression of a product that is usually not produced in leaf primordial cells. We suggest that this product interferes with the early cell-type commitments of cells near lateral veins. Thus, relatively uncommitted cells are present in more mature blades, where they may divide unexpectedly into knots or may induce bits of ligule.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3