DELETERIOUS MUTATIONS AS AN EVOLUTIONARY FACTOR. II. FACULTATIVE APOMIXIS AND SELFING

Author:

Kondrashov Alexey S1

Affiliation:

1. Research Computer Centre of the Academy of Sciences of the USSR, 142292 Pushchino, Moscow Region, USSR

Abstract

ABSTRACT A population with u deleterious mutations per genome per generation is considered in which only those individuals that carry less than a critical number k of mutations are viable. Besides a large number of loci subject to mutation and selection, the genome contains one or two special loci responsible for the mode of reproduction. Amphimixis vs. selfing are considered separately. In the first case, the genome degradation rate v (=u/√k) is found to play the decisive role, as in the case of recombination. When v > 1.25, obligate amphimixis is established. If v decreases below this value, the alleles with first low and then larger penetrance are fixed, until alleles conferring obligate asexual reproduction become advantageous. The proportion of resources allocated to produce seeds also increases with decrease of v. These results are unlikely to depend on the genetic basis of the mode of reproduction. The result of competition between outcrossing and selfing depends on both u and k, as well as on whether the mutations are recessive. The alleles for selfing with low penetrance are selected against if the mutations are at all recessive. The fitness of alleles with high penetrance depends primarily on u, decreasing when u increases. There may exist conditions when only the alleles providing intermediate selfing rates can be fixed in a population. In other cases a population may exist with either obligate outcrossing or selfing at a high rate. Thus, truncation selection against deleterious mutations may be a factor supporting obligate or facultative sex despite the twofold advantage of apomixis or selfing.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3